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.SUMMARY

The use of Stokes' stream function for axially symmetric prob-
lems in linearized supersonic flow is discussed. The computation
of streamlines away from the body is shown to be facilitated by
solving the stream~function problem rather than the potential prob-
lem. TUse 1s made of the stream function throughout this report.

Half -power supersonic source distributions along the axis of
symmetry are shown to provide streamlines that, at finlte distances
from the axis, turn a sharp corner at the Mach cone and are regular
downstream of the Mach cone. Distributions of this type are used
to provide the following procedures for open~-nosed bodies of revo-
lution at zero 1ift:

1. A numerical method for the computation of pressures along
the body: The method, for which a simple example is glven, is
especially easy to apply on the forward part of the body.

2. Linearized formulas for the variation of strength and angle
of the attached bow shock wave as functions of radial distance
from the axis.

INTRODUCTION

In the deslgn of a supersonic aircraft, the aerodynamics of
an open-nosed component (for example, a ram-jet-engine housing)
must often be described. In the amalytical treatment of this type
of problem, the determination of the flow about slemder, open-nosed
bodies of revolution at zero yaw may frequently be of value.

A standard method for computing the external pressure distri-
bution assoclated with this type of flow is the numerical procedure
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2 NACA TN 2116

described in reference 1, whereln a supersonic source distribution
on the axis of symmetry ls used to dlstort the free stream in such
a way that one of the resulting stream surfaces approximately repre-
sents the body surface. A source distribution automatically msets
two requirements of the problem:

1. The flow produce& satisfies the linearized equations of
motion of a compressible fluid.

2. Flow disturbances are limited to the reglon bounded by the
outer surface of the body and the leading Mach wave proceeding out-
ward and dovnstream from the 1llp, provided the source distribution
is considered zero upstreem of the apex of the Mach cone of which
the leading Mach wave 1is a frustum.

A particular source distribution mmet be selected to provide
a stream surface colncldent with the body, to the first approxi-
mation In body slope. In the case of slender pointed bodies of
revolution (reference 2), a simple relation exists between the
source strength distribution and the slope of the body to be repre-
gented. The existence of this relation is due to the nearness of
the body surface to the axis; the streamline slope at a point near
the axis 1s a consequence only of the local value of the source-
distribution function, to the first approximation.

When the body has an open nose, no such aimplification may be
considered to apply to its forward portion. The source distribution
is then determined by an integral equation, which must be numeri-
cally solved; inasmuch as no closed solution seems aveilable.

If the boundary condition on streamline slope at the body sur-
face 1s applied on a mean cylinder, this integral equation mey, in
principle, be solved by operational methods, yielding solutions
equivalent to those obtained for "quasi-cylindrical ducts" by
Lighthill, whose work is summerized and extended in reference 3.
The solutlions appearing in reference 3 are given in integral form,
and must be evaluated by numerical quadrature at each point where
the pressure is to be determined. The accuracy of these results
will suffer, in certain cases, from the application of boundary
conditions at a mean cylinder. '

A form for the source distribution is assumed in reference 1
(and in the present report) and the undetermined perameters are
then selected in such & way that boundary conditions are satisfied
with edequate accuracy. The form assumed in reference 1 is trape-
zoidal; that is, has a step-wise constant slops. The number of
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steps and thelr spacing is determined by the accuracy desired, and
the slope of the distribution function between stations 1s deter-
mined by the shape of the body to be represented.

In selectlng a form of solutlon wherein only certaln param-
eters are avallable for variation, it 1s desirable to anticlpate,
insofar as possible, the fectures of the "exact" solution. On
this basis, the trapezoidal distribution appears to have a certain
dlsadvantage: nemely, when approaching the intersections of the
body surface with the Mach cones emanating from the points on the
axis where the source-dlstribubtion slope 1s dlscontinuous, the
streamline curvature tends toward infinity, whereas the streamline
g8lope remains finite and continuous and, in fact, vanishes at the
leading Mach wave. Verification of this statement is subsequently
provided. This singular behavior of the streamline chosen to
represent the body means that a large number of stations is
required in regions of rapidly varying body slope, for example,
near the lilp of an open-nosed body. In particular, adequate evalu-
atlon of the local effect of discontinuous body slopes required a
relatively dense local concentration of integration s?ations. An
analysis of the linearized supersonic flow-over the forward part
of such bodies was made at the NACA Lewls laboratory and is pre-
sented hereln.

A family of solutions is developed for axially symmetric open-
nosed bodles at zero yaw, which maey be combined to provide either
smooth or polygonal streamlines, as desired, and whose parameters
can convenlently be selected in order hest to represent the forward
part of a glven body. In particular, solutions are sought that can
be smoothly matched to the body in the same menner as a polynomial
could be. The supersonic nature of the flow allows the superposition
of smooth solutioms in such & way as to provide streamline corners.

In brief, bodles encountered in practice will be smooth
between and approaching corners. Solutions whose streamlines
exhlblt regular behavior near a leading Mach wave, but which may
have cormers preclsely at the Mach wave, could therefore be matched
to the forward portion of a given body with a minimum of "forcing"
and hence a minimm of computational labor.

Use 1s made In this analysis of Stokes' stream function because
" solutions in terms of a stream function can readily be solved for
streamlines, which may directly be compared with the given body
contour. The stream function for linearized axially symmetric
supersonic flow was used by Ferrarl (reference 4), who developed
the differential equation and solved it for pointed bodies of
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revolution by & Fourler integral method. In the analysis that
follows, the use of the linsarized streem function is discussed in
somewhat more detall than appears In reference 4. In the interest
of continulty, certain of Ferrari's results are rederived. The
stream function is, of course, not essential to the analysis;
equlivalent results could be obtelned by using the veloclty
potential.

SYMBOLS

The following symbols are used in this report:

P-D_
Cp pressure coefficient, I——é-
z %l
- B complete elliptic integral of second kind.
£(x) locel strength of supersonic source distribution -
g,8n,8 dimensionless functions corresponding to ¥, ¥gp, and
*® ’Q’m s, Trespectively ;

H, (1) flow function

K camplete elliptic integral of first kimd
k, constant .

M Mach number

N number of terms in terminated series

P static pressure

Qn(n) flow function .

R redlal coordinate of 1llp of open-nosed body
r radial coordinate measured from, and normal to, axis of
symmetry

radlal coordinate with which given streamline enters
leading Mach cone

8 dimsnsionless radiasl coordinate
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Th(n)
%

u

floﬁ function

dimensionless axial éoordinate
. axial perturbation velocity
total axial-velocity component
velocity of free streeam

radlal perturbation velocity
total radlal-velocity component

axlal coordinate measured in direction of axis of sym-
metry, origin at apex of leading Mach cone

variable of integration

initial body slope

cotangent of Mach angle of free stream, Aﬁiof-l
ratio of speclific heats

small quaentity depending on body shape, rg-R
body fineness parameter, sp-1

ratioof s to t

angle between bow shock wave and axis of symmetry; aD
refers to dimensionless coordinates

measure of dlstance from 1lip, x-BrB
measure of distance from lip, 1-
variable of integration

density

argument of certalin elliptic integrals

variable of integration
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@ verlable of integration
'qr(x,r} perturbation stream function

'Q‘T(x,r) Stokes! stream functlion for supersonic axlally symmetric

flow
‘D’m free-gtream valus of stream function
Subscripts: o
0 stagnation value
o free-stream valus
B value on body
i ' index identifying point on body

The prime denotes ordinary differentiation.

ANATYSIS
Stokes' Stream Function for Linearized
Superaonic Axlally Symmetric Flow

Stokes' stream function may be defined in the following manner
(reference 5, par. 94):

5 (1)

thus identically satisfying the exact equation of continuity

(restricted to steady flow in this compressible case), which may
be written '

% (oﬁT) + %:% (rm'T) =0
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By comparison with the treatment of the Incompressible case in
reference 5, it is clear that, here also, d¥; 1is an exact dif-
ferential and represents the mess flux across a line element.

Thus, a surface in space on which ¥y 1s constant i1s a stream sur-
face of the flow.

In accordance with the assumptions of linearized theory,
up Eu_+u
Vp=7V (2)
Vp=¥_+ ¥

vhere u,v<< Uy, &and V<< U,. The introduction of these assump-
tions into the isentroplic gas law

and the energy equation, written in the form

p Po -1

2 2
= (up®+vp”)
P Pg 2y T T

ylelds the approximate relation

1) .
@ 2 1
2 .l + My T (3)

Substituting equations (2) and (3) into definitions (1) and col-
lecting terms of like order- ylelds

ov
1 =1 2
u = S5 or ¥_= Eubr (4)
’lJ.:-——zl—g2 ’ (5)
B r
1oV
V=-;-—£ (6)
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Differential equation and boundary conditions. - Substitutlon
of equations (5) and (6) into the irrotationallity condition .

Ju ov

A_LFoo

or ox

gives the following differential equation:

Bzﬁ-ri }_B_W’:O (7)
d3x2 or \r or

The flow over a given slender obstacle 1ls obtained by solving dif-
ferential equation (7), subject to the following boundary conditions:

1. As in the cage of the veloclty potential, either a bound-
ary condition at the bow Mach wave must be introduced or disturb-
ances must be required to propagete only within downstream Mach
cones, which is accomplished by use of the "supersonic source.”,
In order that streamlines be everywhere continuous, the perturba-
tion stream function ¥ must be continuous across the leading
Mach wave (and hence must vanish as this Mach wave 1s approached
from downstream). This fact is obvious when equations (5) and (6)
are considered to be integrated for V¥, the path of mtegration
crossing the Mach cone.

2. On the body the boundery condition is that ¥p = & u, K%,

where R 1s the radial distance of the leading edge from the a.xis
of symmetry. Then,

’Q"(x,rB(x)) = %um[Rz-rBz(x):l (8)

where rp(x) defines the body.

These boundary conditions, together with equation (7), pro-
vide a boundary-value problem of the first kind.

Stream function for supersonic source. - The function

-x/ f\/xz-Bzrz satisfies differential equation (7). This function

18 the stream function for the well-known supersonic source. A
distributlion of such sources along the x-axis ylelds
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NX-Br Co. M
v . £(t)(x-E)at
Jo vx_g)z_szrz
x-pr ) (9)
=- | £1(¢) \(x-£)2-g%r% at
b v
£(0) =0 . J

Substitution of equation (9) into eguations (5) and (6) pro-
vides expressions for u and v 1identical to those provided by -
the distribution of source potentials (reference 2). Substitution

- of equation (9) into the boundary condition given by equation (8)
provides an integral equation for f(x). If a slender pointed
body 1s under consideration, this integral equation (in which R
is set equal to zero) may be differentiated with respect to x
and then, provided rp(x) 1s vanishingly small, may be solved to
yield the relation

Ly & @) @>0

0; (x<0)

£(x)

(10)

where the origin of coordinates is placed at the nose of the body.
This relation wes first used by von Kérmén (reference 2).

Example; right circular cone, at zero yaw, semivertex
angle tan-l . - By use of the method of sources, eguations (9)
and (10) may be combined to yleld the stream function for this flow.
Alternatively, the solution may be obtained by direct integration
of the differential equation, as follows: The solution may be
written in the form ¥ = r2h(n), where the origin is taken at the
nose and n= Pr/x. This form for ¥ is chosen in order to insure
that the flow will be "conical." Substitution in equation (7)
yields an ordinary differential equation for h(n). This equation
mey be solved to yisld

1 1
T = rz [Cl (-—2 -T]2 ~- cosh”™ -1 1])+ Cz]
Ul
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where C; and Cz are constants of integration to be determined
from the boundary conditions. Inasmuch as the perturbation stream
function must vanish on the bow wave (n = 1), Cp must be zero.
The boundary condition given by equation (8) provides that

-1
-1 _L_\[; 242 - -1 L
Cq 5 um< 2.2 -B%a cosh Bcc.>‘ (11)

Therefore

1 222/1 2 <11
T’:-g%ﬁar <— -1~ - cosh H)

An identical result can be obtained by use of the source-
distribution technique.

An intersesting feature of the solution is noted:

The exact formulation of boundary conditions yields the value
of C; given by equation (11). The axial perturbation velocity u
may be obtalned from the stream function as follows:

Up /1 22 11\t 11
w=-— (=518 - cosh” —) cosh — =
B” \B @ pa 1

2 -1 1

n

N -
ua cosh

The corresponding potential problem may be solved in a similar
manner, in which case the use of exact boundary conditions pro-
vides that

-1
n
= - —%—" —2]-'? l-Bza,z + —]%6; cosh"l L cosh~1 L
B% \p B fa

=
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Although the foregoing linearized results are ldentical, the exact
solutions differ, thus emphasizing the lncorrectness, in general,
of using exact boundary conditions in the small-perturbation theory.

Use of stream function. - The use of the stream function has
the primary aedvantage of providing a ready means of computing
streamlines away from the body; for example, in the design of a
tunnel-wall insert to eliminate wall ‘interference. Equations (2)
and (4), and the assumption that the stream function 1s continu-
ous across the leading Mach cone, may be used to yield the follow-
ing equation of a streamline:

1 2
¥p=5147rg
or
1 2 _ 1 4
> ur” + V= g-qer

where the streamline is ldentified by the radlal coordinate rg
with which it enters the Mach cone. For example, the following
equation 1s obtained for a streamline of the cone flow treated in
the preceding section:

Ty é 22/1 2 1.1
—] = 1-8% --Vl-n - cosh™ — =

If, in the course of calculations, it is necessary to find the
family of streamlines associated with flow over a slender axially
symstric body at zero yaw, it would be simpler to formulate and
to solve the problem in terms of the, stream function.

A method of linearized characteristics based on equation (7)
should yield the streamline Tamily very quickly. Velocities could
then be computed by forward differences.

Treatment of Open-Nosed Bodles of Revolution

An alternative numerical technique for open-nosed bodles, based
on the use of the stream function produced by a source distribution,
1s developed in the following analysis:
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The family of source distributions that gives polyncmial
streamline slopes near the lip of the body is sought. An illus-
trative open-nosed body is shown in figure 1. The definition

rB(x) = R + 5(x)
where B<<R,
is introduced into equation (8), yielding the approximate relation
1;lT(x,rB(x)) = - umR5<x) (12)
Equating expressions (9) and (12) yields
-ﬁrB
2 2_2 1/ 2
u R(x) = . (=-t) £(¢) l:(x-g) -8 rB:, at (13)

Equation (13) may be expressed in terms of the quantity up = x-prg,
which is taken to be very small (thus restricting consideration to
the vicinity of the 1lip). The following approximate equation

results:
(5() L]‘f(i)d&

This is Abel's integral equation, the solution of which is,
according to reference 6 (par. 11.8):

£(x) = _\/— fa(ﬁ)dg (14)

whence,
1. If 8(u)ew u, then equation (14) provides that £f(x) o x
2. If 8(p) ® p2, then o(x) £3/2,

3. If &5(p)o ps, then f(x) cnxs/z, and so forth.

1/2
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A similar snalysis will show that if f(x) ® x (as in the

method of reference 1), then &(p) ® u3/2. Thus, as stated in the
INTRODUCTION, the open-nosed body associated with a linear source
distribution has at the 1lip (p = 0) a vanishing slope ard an
infinite curvature.

In view of the foregoing results, a sequence of solutions
for ¥ are sought, each solution (¥,) corresponding to a source

distribution on the axis of symmetry, of the form % 1/2, where

n equals 1,2, 3, . . . .

These solutions cen be combined to represent a given body,
with the assurance that this representation of the body will be
regular (that is, will have a Taylor expansion) near the 1ip.

The following dimensionless quantities are defined:

= X - I _ 8
ts — 8= - nE —
RB R t
(15)
& = &8, where g= _L, and so forth
u Rz
By comparison of thege definitions with equations (4), (5),
(7,
1
&p = 5-52 + 8 (16)
L _ 11l
Un g2 s 38
> 3 (13
__g..s__.. _..;g_ =0
2 Os \s Os
Using the usual linearized form for the pressure coefficient yields
u 2 19
CP='2_£=B_2'EB'§ (17)

Near the 1ip of an open-nosed body, the two-dimensional char-
acter of the flow insures the validity and the adequacy of egqua-
tion (17). Far downstream of the 1lip, provided there are no
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further streamline corners, the flow will approach that for the
corresponding pointed-nose body of revolution. Higher order terms
appearing in Bernoulli's equation would then be of sufficlent order
of megnitude for inclusion in the formula for pressure coefficlent,
although a strict mathematical basis for their incluslion would be
lacking. Because this report places emphasis on the forward por-
tion of the body, additional discussion of this question would not
be pertinent.

In the notation of equation (15), a sequence of stream func-
tions g, are to be obtalned, each member of the sequence to cor-
respond to a certain axial source-distribution function f,. Thus,
when definitions (15) are substituted into equation (9) and the
variable of integration is suitably redefined, the following
expression (aside from a constant) is obtalned: :

t-8

g, = - . £4(T) [(t-'r)z-sA ar (18)

2] 1/2

In accordence with the previous discussion, £, 1s chosen to
be

£.(t) = kntn-l'/ 2 " (19)

where n 1s an integer, and k, is an undetermined constant.
Substitution of equation (19) into equation (18) and integration
according to the method set forth in appendix A provide the fol-
lowing results for g, and, by superposition, a terminating series
of N terms for g:

n+l/2

&y = kpt Hy(n)
g = an 52 () (=0)
By use of equation (17) schn may be expressed in terms of gp:
Bchn - 5 t3/27_(n) |
Bch ='ZII kntn's/zTn(n) : (21)
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where
5 (1) = 2 \Lm £ [-1K(0) + B(O))

Hn(n) n-l [Zn 14y (X-E) +H ; +1 (H _— H 2+ ... +H__L)]

n>1 (22)
T =2 K(c
1(n) = Vo (o)
— 2n-1 )2 .
T = = (=11 4451 )K-51E
n(n) ) {n AL+ [:1”1 (4+51)K-5q ] +
T, 1+ nz(Tn_2+Tn’3+ . o . +Tl) + (23)
4(Hn_2+Hn_3+ e . +H1)} ’ n>1
and
/2 SV
XK(o) = dp (1-0% sin® @)
Jo
/e o)
1l/2 24
E(o) = dp (1-0% sin® o) (24)
uo
=\ XN
o=\t -

(The symbols K and E are complete elliptic integrals of the
first and second kinds, respectively.) The H(y) and T,(n) are
tabulated in table I, for n=1 2, 3, 4, and 5.

The equation for determining the comnstants k, 1is developed

as follows: On the body, the boundary condition given by equa-
tion (8) requires that
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g=%(1-8;0)

Thus, equation (20) provides that

e(tB(n)>|EL . e<+.B(n>)]= -8(sp(n)m) = i ™ Fr (0

(25)
where
sg= 1+ e(t)

' 1/2 1/2

Because kj corresponds to f(5)o t and b is the
only distribution function providing a nonvenishing streamline
slope at the 1lip, k; 1is determined solely by the 1initial body
slope. Near 7 =1, let n =1 -v, vwhere V<<1, and thus
tg # 1 + v. Equation (25) then becomss

¢s -kiH; (1 -v) (26)
From equation (24),
r\n'/z
P T D 2
K<’\/—2-)=§+ZU0 sin®“® 4O
F\J‘t/z
\ ,v ~X v 2
E( §> 5~ Z do sin ¢ 4o

-nK+E~g-:tv

or

7T
202

By use of the fact that + = 1 + v on the body, equation (26) may
be differentiated to provide

Hl(’l-v) ® - v
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2\/2
i) = _.,.r'\/: [e' (4]
te=l
z'\/'z"

L8

e@ (a)

The remaining values of k, are computed as follows:

1. Equetion (25) is formmlated at N-1 points on the body
(exclusive of the 1lip, because all the Hp vanish for n = 1).

2. The resulting set of N-1 linear algebraic equations 1s
golved for ks, kz, . . . , ky.

When the constant k, has been determined, BZC " 1is computed
directly from equation (21). A more detailed outline of numerical
procedure will be subsequently presented.

Linearized treatment of attached bow shock. - The flrst
approximation to the strength of the bow shock for an opsn-nosed
body may easily be obteined from g; because, in the linear the-
ory, characteristics of the same family never intersect, thus pro-
viding that the shock strength is a function only of the initilal

body slope. Defining the shock strength as A(Bch) across the
shock yields

¢ 2 -1/2
A(B'Cp) = kgt nl_jfl T4 (1)

where 1n approaches 1 from below.

-From equations (23) and (24),

n/2
lim T(q) = zf dp= %
Un T, Ve | o

and applying equation (27),

n
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-1/2 -1/2

ap%e)) = 2er(Ltg = 2e'(L)sg

or (28)

2 TR 1/2
A(CP) =3 8'(BR) (;)

Equation (28) gives the linearized rule for the attenuation of the

shock strength with increasing distance from the axis of symmetry.

(Note that when rg/R = 1, equation (28) gives the two-dimensional
result.)

In view of the foregoing result, it should be possible to pro-
pose a formula for the shape of the bow wave. _Such .a formumla
should, of course, be checked againat a solution by the method of
characteristics iIn order to establish its value. At first 1t would
seem that a first-order determination of the shape of the bow shock
wave would be in conflict with one of the baslc results of the
first-order (lineerized) theory, namely, that all shock and expan-
sion waves appear to be located at Mach surfaces.

The exact oblique-shock-wave relatlons may, however, be used
to show that a first-order flow deflection through a shock wave is
assoclated with a first-order variation of shock position from that
of the Mach surface. Hence, If formulas are available for the flow
deflection and the pressure rise across the shock, both pregumed
accurate to first order, and if they are consistent (to the first
order) with the requirements of the obligue-shock relations, these
pressure and deflection functions may be used to determine, to the
first order, the only remaining quantity involved in the shock
relations, namely, the shock inclination.

1. In order to show that the pressure-rise and flow-deflection
formules stand in the proper relation, equetion (28) is first
modified to

-1/2

A (:t)= -1 s'(BR)(%) (29)

Equation (168) may be written as follows when equations (20) and
(27) and a definition of sy &s the radial coordinate of the
streamline entering the Mach surface are used:
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3/2
%’SEZ = _:]2;52 + g_:ré et (L)t H (n)

(Note that inasmuch as this is the equation of a gtreamline, s 1is
to be considered a function of +.)

The derivative of the preceding equation nia.yAbe evaluated at
N =1 to provide the flow deflection through the shock. The fol-
lowing result is obtained:

o8 . -
(-5'-!3.)1]:1 = € (l)SE

-1/2
or . g
(‘g)n:l = 5'(BR) (-f{_ .

This result was previously obtained in referemce 3, wherein an
entirely different approach was used. Adding equations (29) and

(30) yields
u\_ _(or
B A<?;;> <§EJL=1 (31)

Equation (31) must now be shown to be consistent with the
obligue-shock relations. The angle between the shock wave and the
axis of symmetry, in the original (x,r) coordinates,is defined
to be 6. This definition may be introduced into equation 4.22
of reference 7, which then may be written as

1/2

or (30)

or, inssmich as +tan 6 = 1/B,

&)
OX /=1
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which clearly reduces to the first-order relation given in equa-
tion (31).

2. The ghock-wave inclination mey now be determined.. Eque-
tion 4.29 of reference 7 may be written as

2 -1
1+ 2 M 2a(c) =27 42102 9 - 1=
2 @& r+l ® 7+l
or
7+ 2
1+ —=M_ A(C,)
B 7+l M
SR Al - 8
Lo 4(Cp)
From eguation (28),
-1/2
2 g (pm)(Z
A(C. ) = — —_
(cy) 8 R
and thus, because A;(Cp) is a small qua.ﬁ'bity,
1 1 Mm4
. .tanez._+ﬁ'..__A(Cp)
. B 8 3
: B
or
4 -1/2
M
ten 6% l‘-.,.ﬁ];ﬁ. 5' (BR) E (32)
B 4 84 R

If 6p 1s defined at the shock inclination (fig. 1) in the coordi- .
nates introduced in equations (15), equation (32) beccmes

4
M -1/2
tan9D=l+Z£}-—%- ' (1)sg / (33)

B

Equation (33) is exact at an infinite distance from the body.
The error at the 1lip of the body should indicate the ma.g’nitud.e of
error at finite distances from the surface. For a free-gtream Mach
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number of 1.50 in eir (7 = 1.4) and an initial body slope of

5 percent, the exact obligue-shock relations yield a value of

tan 6 = 1 at the 1lip; whereas equation (33) glves tan 6 = 0.988.
These results are to be compared with a Mach angle egual to

tan™l 0.894. At the lip, equation (33) is therefors in error by
about 1 percent in predicting the shock angle and by about 12 per-
cent in predicting the difference between shock and Mach angles.,

METHOD FOR PRESSURE CAICULATION AND EXAMPLE

The functions T, and H,, appearing in eguations (21) and
(25), respectively, are tabulated in table I. The reciprocal
sequence of 1 ©provides approximately equal intervals of tg(q)
for a slender body, thus meking it unnecessary to perform inter-
polations. The following numerical procedure is recommended :

1. Select the number (N-~1) and location (n4) of the points
(exclusive of the 1lip) through which the streamlines will be
required to pass. Define these points by values of 15 for which
the functions in table I are given.

2. Compute tB(ni) from the equation of the body and tabulate
=1l/2 1/2 N+1/2
tp(ny) 2, tg(ng) 2, .., tB(n1)+/.

3. Campute ky from the initial slope of the body, using
equation (27).

4. Formulate equation (25) at the N-1 "matching points,”
and. solve the N-1 simultaneous equations for ké’.kﬁ’ e oey kN'

5. Use the Lk, thus determined to compute BZCP at any
desired location, using equation (21).

This procedure hes been carried out for a truncated cone of
slope €'(1l) = 0.0523, matching streamlines at 3 = 1/2, 1/3,
and 1/4, ard at 7 = 1/2 and 1/3. The results appear in figure 2.
Comparison is made with the result obtalned by the method of refer-
ence 1 for a truncated cone of the same slope, using approximately
eight integration points in the range of t+ shown (reference 8).
An edditional curve shown in figure 2 was obtained by applying the
boundary condition on streemline slope at 1 = 1/2, 1/3, and 1/4
on the body, and computing Cp, as was previously dome. Appen-
dix B contains the pertinent analysis and procedure, which gives
rise to the function Qu(n) plotted in teble I.
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In order to determine the accuracy abttained by using a certain
set of matching points, eguation (25) may eesily be inverted and
solved for € at intermediate points. These values of € should,
of course, fall on the surface of' the given body, with an error of
the order of €2, This inversion may be carried out with suf-
ficient accuracy by assuming that tp(n) at the intermediate
points 1s glven by the equation of the body.

As a guide to the selection of matching points, the following
generalizations are offered:

1. The farther downstream the computations are to be extended,
the denser must be the matching-point distribution. (In the
method of reference 1, the density of integration stations must be
greatest near the lip ) 15115 questlon of convergence.will be sub-
sequently discussed.

2. Very few polnts are needed near the 1llp.

3. Pressure values cannot be computed with adequate accuracy
at points downstream of the lest matching point.

DISCUSSION OF METHOD FOR FRESSURE CALCULATTION

The use of the half-power source distributlon on the axis of
symmetry provides & family of stream functions that are easily
related to the forward portlon of a glven body. The component
stream functions of equation (25), however, beccme infinite at
y =0 and, ag computations are extended downstream, satisfactory
convergence is obtained with increasing difficulty; that 1s, the
matching-point density must be greater. Near the lip of an open-
nosed body, the present method therefore converges rapidly; whereas
the method of reference 1 converges slowly (the computations of
reference 1 do not automatically provide the two-dimensional solu-
tion at the lip, but rather converge to that solution as more and
more integration stations are used). Toward the aft portion of
the body, the reverse 1s true. '

Good. agreement between the method proposed herein and the
method of reference 1, on the forward portion of the body, is shown
in figure 2. Farther downstream, the result begins to diverge from
the proper one - for the reason previously mentioned. In order to
extend the solution downstream, more matching points would have to
be provided.
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Of course, the stream function i1s not essentlal to the present
technique, nor is it the cause of the downstream dlivergence of the
mothod. For the case computed, the curve in figure 2 obtained by
matching streamline slopes (as is customary in analysis based on
the velocity potential) diverges from the proper result farther
downstream then doss the corresponding curve obtalned by matching
gtreamlline locations.

CONCLUSIONS

Stokes' stream function for supsrsonic linearized flow may be
used to advantage whenever 1t 1s desirable to deal directly with
streamlines.

Use of half-power source distributlions on the axls of symmetry -
glves a famlly of stream functions having streamlines regular near
the 1ip of an open-nosed body of revolution. These streamlines,
being regular, are easily ma.tched to the forward portion of & glven
body. ,

First-order relations have been obtalned for the attenuation
of shock gtrength and flow deflectlion outwerd along the shock and
for the corresponding shock-wave Iinclination. These results should
be checked agalnst experiment or the method of characteristics
before being applled to practical problems. It is felt that these
relations would probably conform rather well to physical fact, pro-
vided the entrance slope is small. These relations contain an
error of the order of [6'(BR)]Z at the-1ip of the body (where B
1s a small quantity depending on the body shape, B 1s the cotan-
gent of the Mach angle, and R is the radial coordinate of the
1ip of the body), and become exact as the radial coordinate »
approaches infinity. It thus seems plausible that the error in
the formules for shock strength and inclinastion would 'be of second
order over the entire shock front.

Lewls Flight Propulsion La.boratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, December 5, 1949.
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APPENDIX A

METHOD OF EVALUATING &,

Equation (18) may be written, after the substitution of  equa-
tion (19), as

b5

g, =~k <n-%) 5 ‘:(t-T)z-BZ]l/z Tn-3/2(‘1T (A1)

The following change of variable of Integration is introduced:
1/2

l-n ¢
This substitution ylelds elliptic mtégra.ls in Isgendre's canonical
forms. From reference 6 (par. 22.72),

. |
1 [(s?ya-&A P o x
J:yﬁ ) (1- &) (©) (42)

1/2
2 2 02 2 1
1- 1- -= = |K(g)-BE A3
Py [0 0B - S [K0Ee)] )
differentiating and in‘begré.ting the expression

1/2

yZn-l [ (1_yz) (1- OZyZE]

Yields the following recursion equation: ‘
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1

' 1
(2n-1) | 7*%ay [(1-5'2)(1-0'2 Fzﬂ-l/z -2n(1+cF) f yzndy]; . ;]-1/2 +
0 0

1
-1/2
(2n-1)0° £ yzn"zay[. . :l / = 0 o (ad)

Equations (A2), (A3), end (A4) permit equation (A1) to be expressed
in terms of K(o) end E(o).

In computing velocities, use is found for the following equa-
tions (reference 6, par. 22.736):

dE(o) 1T
, = — |E(0)-K(0)
o daz 202 i ]

d.K(O) - __]_'_ —]-EE(C)"'K(O')]

ac?  20° |1-0
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APPENDIX B

BOUNDARY CONDITION ON STREAMLINE SLOPE

In the numerical method developed for the determination of
Tressure on an open-nosed body, a boundary condition (equation (8))
on the stream function has been applied. Alternatively, a boundary
condition on streamline slope may be used as follows: The boundary

condition is
v v
—) = [— = &'(x)
(u +u (um)

[=-)

which becomes, after definitions (5) and (6) are introduced,

L& _n%) .
5 (Bt ton, = ¢ (82)

Equations (15), (17), and (21) ensble %% to be expressed in terms

of T,(n), end equation (20) provides & relation between g% and
and Hp(n). Thus, equation (Bl) becomes

/2

e (t5(n)) = }if I b)) Can(n) (2)

where

Q(n) = %n Tp(n) - (M%)%Hn(n)

Values of the function Qu(n) may be found in table I.

The method for pressure calculation using the boundary con-
dition on streamline slope is preclsely the same as that previously
described, with the exception that equation (B2) has the role here-
tofore played by equation (25).
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TABLE I - FUNCTIONS USED FOR COMPUTING STREAMLINES‘AND PRESSURES

1/n -Hq -Ho -Hgz ~Hg -Hsg
1 0] 0 0] 0 =0
1.25 .20766 .03054 .00475 .00032 -.00080
1.5 « 32871 .07922 . 02042 .00392 -.00194
2 .46001 .16453 .06697 .02903 -.01318
3 .56426 .26112 .13912 .07914 -.04681
4 60436 «30799 .18195 .11505 -.07560
5 .62480 »33451 .20873 13987 -.09763
6 .63624 35063 22603 .16679 -.11344
7 64346 . 36132 23797 ».16893 -.12519
8 .64849 .56888 .24667 .17802 -.13426
9 .65204 . 37437 «25311 .18487 -.14121
10 .65454 ,37845 | ,25801 .19019 -.14669
12 .65764 . 38390 .26475 .19770 ~-.15460
14 .65986 . 38758 «26935 .20286 -.16011
16 .66114 . 39001 .27246 .20642 -.16400
l/ M Ty To Ty Ty Tg
1 2.22171 0 0 0 0
1.25 2.41109 73505 .18679 .04786 .01895
1.5 2.57167 1.32770 .56925 .24245 . 12785
2 2.83099 2.22958 1.,41591 .83058 .46526
.3 3.21120 3,48473 |. 2.98658 2,35334 1.77371
4 5,48788 | 4.37032 4,26209 3.81094 3.,26231
5 3.70498 5.04664 5.28699 5.06011 4,62728
6 3.88312 5.59980 6.15194 6.15842 5,88378
7 4,03528 6.06782 6,89588 7.12501 7.01890
.8 4,16621 6.46680 7.53546 7.96738 8.02372
9 4,28338 6,82305 8,11157 8,73563 8,95364
10 4,38734 7.13981 8,62701 9,42871 9,80062
12 4,56878 7.69240 9.,53250 | 10.65814 11.32064
14 4,72204 8.15524 |10.29267 |11.69685 12.61471
16 4,85539 8.55928 | 10.95993 | 12,61379 13,76563
1/ Q Q2 Q3 Qg Qs
1 1.,11086 | -0 0 0 o
1.25 1.35380 . 38946 .C9550 .02094 . 00208
1.5 1.59683 » 73965 .29696 .10728 .02661
2 2.08778 1.38005 82277 .46892 -.02866
3 3.07436 2.53920 1,95852 1.46061 -.47675
4 4,06215 3,62619 | - 3.08006 2,54727 -1,25541
5 5.05650 4,.68604 4,18148 3,65309 |.-2,22210
6 6.04978 5.72611 5.25930 4,74654 -3.256320
7 7.04457 6.75652 6.32284 5.83024 -4,31846
8 8,04227 7.78178 7.37773 6.,90668 -5,40596
9 9,04050 8,80238 8.42361 7.97255 -6,49248
10 10,03747 9.81824 9.46170 9.02999 -7,57792
12 12.02788 | 11.83750 |[11.51667 |11.11987 -9,73193
14 14,02571 | 13.85656 |13,56575 |13,19793 |-11.87794
16 16.01909 | 15.86788 | 15,60026 |15.,25642 -14,00182
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Shock wave

Leading Mach
cone

\,
N Axlis of symmetry

Figure 1. - Illustrative open-nosed body.
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Filgure 2., - Pressure on a truncated cone.
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